If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+5y=75
We move all terms to the left:
y^2+5y-(75)=0
a = 1; b = 5; c = -75;
Δ = b2-4ac
Δ = 52-4·1·(-75)
Δ = 325
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{325}=\sqrt{25*13}=\sqrt{25}*\sqrt{13}=5\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{13}}{2*1}=\frac{-5-5\sqrt{13}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{13}}{2*1}=\frac{-5+5\sqrt{13}}{2} $
| 3=6bb= | | 52=12+2n | | y=180-29 | | 22.7x+3/8=5/4 | | 18/6x=4/(x+3 | | 5x+9-3x-13=2(11x+x) | | -11=x-6-1 | | x=180-78 | | 3p-5=28 | | (2x+9)-(3x-13=2(11x+x) | | 500-4x=252 | | 5x/2-3/2=-1/4 | | -x/3=-25 | | X=38+5x | | x+4/3=0 | | -3n-53=-686 | | 17=-2m+5-4 | | 5(x+2)-3x=2(x+50 | | -20=-4a+8a | | w^-16=0 | | x+(x+8)=15 | | 11.3p/2.8=1.5 | | 11x^2+x^2=(4x+8)(3x–3) | | 23=-6n+23 | | x+(x+19)=27 | | 3.2r+1r+14.7=-6.74 | | -13.7=-18.5x | | 3(d–8)+1=19 | | (4y+7)-(3+3y)=6 | | 16x-12=32+12x | | x=180-121 | | 11x2+x2=(4x+8)(3x–3) |